DESIGN REVIEWS AND DECISION-MAKING USING COLLABORATIVE VIRTUAL REALITY PROTOTYPES; A CASE STUDY OF THE LARGE-SCALE MK3 PROJECT

Stefan Woksepp¹, Thomas Olofsson² and Rogier Jongeling³

ABSTRACT

LKAB, a large mining company in Sweden, is investing 290 million Euros in a new pelletizing plant in Malmberget, Sweden (MK3). The complexity of the project, the number of actors involved and the desire to involve end users such as industrial workers responsible for the future plant operations in the design makes VR an excellent enriched source of communication in the design review process.

This paper describes a practical approach to facilitate decision-making, coordination and to communicate client requirements in the design review process using a number of collaborative VR (Virtual Reality) prototypes of the plant including the construction and installations. The model based working methods that are used in the case study is discussed in the context of lean construction.

The case study shows that the use of VR has increased the value for the client and the reliability in the design process. VR mock-ups have also minimized the waste in the production phase by eliminating collisions between the different designs. Even though the Partnering concept facilitates the cooperation between the different stakeholders the main cause for the intense information flow and willingness to share the information has been the time pressure forcing the different design teams to act concurrently.

KEY WORDS
Virtual Reality, Design review, Decision-Making, Collaborative working environments, Client requirements, Concurrent engineering.

INTRODUCTION

ICT IN CONSTRUCTION

Even if the introduction of computers in the construction industry has changed the way we work its full potential is yet to be reached. Information management in construction projects is still a document-based process. Communicating, coordinating and maintaining up-to-date information is very difficult to achieve, especially in large construction projects. A great number of paper and reports emphasize the need for change in order to increase the effectiveness of the AEC industry (e.g. Egan 1998; Koskela et al. 2003). In a recent report “Cost Analysis of Inadequate Interoperability in the U.S. Capital Facilities Industry” (NIST GCR 04-867, 2004) by the National Institute of Standards and Technology (NIST) it is indicated that the cost for inadequate interoperability in the U.S. Capital Facilities run up to $15.8 billions annually. This report contributes to the awareness of interoperability-related issues, not only for owners and operators in the capital facility industries, but also for the construction industry at large. This might not be a technical-related problem but rather a consequence of the reluctance to share information and

¹ PhD Candidate, MSc. Div of Structural Engineering, Luleå University of Technology, SE-971 87 Luleå, Sweden, and NCC Construction Sverige AB, NCC Engineering, SE-405 14 Gothenburg, Sweden, Phone +46 31 7715046, FAX +46 (0) 31 771151188, Stefan.Woksepp@ncc.se
² Professor, Div of Structural Engineering, Luleå University of Technology, SE-971 87 Luleå, Sweden, Phone +46 920 491362, FAX +46 (0) 920 491913, Thomas.Olofsson@ltu.se
³ PhD Candidate, MSc. Div of Structural Engineering, Luleå University of Technology, SE-971 87 Luleå, Sweden, Phone +46 (0) 702 702543, Rogier.Jongeling@telia.com
knowledge between the stakeholders in a construction project. Lack of trust and lack of adequate tools for communication are considered to be two of the most important factors for information losses in traditional construction projects (Blokpoel 2003). Building trust is not an easy task, especially in an industry, where the relationship between parties is often characterized by shifting risk, contracts and adversarial perspectives (Busch and Hantusch 2000). Since the communication between actors in a construction project is mainly based on documents the breakdown of the project and its presentation can only provide some basic information transfer between the stakeholders of the project (Kähkönen 2003).

Changing the industry does not necessarily rely on the introduction of new advanced information and communication technologies (ICT); however, many of these systems have proven to be very efficient in other sectors. The result from the EC project ESPRIT CICC (1999) indicates that the efficiency can increase of 30 % is possible by exploiting the possibilities of different ICT tools. However, to act as a facilitator the ICT systems have to support the business processes (Björnsson 2003). Since today’s constructions process is developed to produce documents and 2D drawings, these procedures also have to change when new design methods based on technologies such as 3D, VR and product-models is introduced. Several European Information Society Technology (IST) projects have taken the challenge to introduce new ICT tools and model based work methods in the construction industry, e.g. OSMOS, eConstruct, Divercity, ISTforCE, eLegal, GLOBEMEM, etcetera. The results from the ICCI project (ICCI 2004), where one of the objectives was to improve the coordination between these IST projects, revealed that there is also a need to overcome social and technical barriers in the construction industry. Some of the recommendations of especially importance are:

- Improvement of trust and social cohesion between all stakeholders involved in the construction process and product lifecycle.
- Changing the attitude and perceptions of the industry towards ICT.
- Improvement of reliability and security of data and information exchange, as well as their underlying ICT systems.

One way to improve communication and to provide a good understanding of the construction and its facilities is to exploit the potentials of advanced visualization such as Virtual Reality (VR). VR is a spatial communicating medium well suited to facilitate collaboration and understanding about the construction and the processes needed to erect it. Even though VR is primarily used for visualizing the final product (Woksepp 2001) it has great potential to be a universal interface to all design applications (Aouad, et al. 1997; Issa 1999). VR has also proven to promote collaboration in e.g. the design process through its ability to allow team members to create and evaluate designs simultaneously for function, cost and aesthetics (Issa 1999). Actually, some of the major business drivers for VR identified by lead users are design coordination and design reviews (Whyte 2002), including the possibilities for processing of client requirements.

RESEARCH ISSUES

Given the fact that VR constitutes an unexploited resource in the construction industry makes it particularly interesting to study how it can be used in a large and complex construction project as the MK3. Our aim is to describe how VR is used in the design process. Especially to facilitate coordination, decision-making and processing of client requirements in the design review process. The impact has only been measured qualitatively in interviews since it is difficult to estimate the impact on economy and time in a project as MK3.

THE MK3 PROJECT

BACKGROUND

The Swedish state owned mining company LKAB has recently initiated the design and planning process of a new pelletizing plant (MK3) in Malmberget, located in the north of Sweden. The plant is planned to be operational by October 2006 and involves an investment of €290 million. It will be complementary to an existing pelletizing plant for the purpose of increasing the production capacity. The Centre for Information Technology in Construction (eBygg) at Luleå University of Technology is closely monitoring and studying the design, planning and construction process of the plant as it involves the application of advanced IT systems, such as process-plant design software and VR walkthrough environments.

The client’s, LKAB’s, three key goals in the MK3 project is to obtain a plant with required Capacity in Time within the Investment frame.

THE UNIQUE CHARACTERISTICS OF THE PROJECT

To discuss whether a construction project can be classified as unique or not often leads to different standpoints. Nevertheless, one can certainly assert that the MK3 project is set of conditions that all together have an effect on the project perfor-
mance in a way that separates this project from other similar projects.

The time period from the decision of investment to completion of a the pelletizing plant is limited to two years. This put great demands on the project organization and project performance. Also the preliminary study as well as the preliminary design, which both formed the basis for the investment decision, was carried out during a very short period of time. In “normal” construction projects, the spatial needs govern the preliminary plans. These are transformed into a concept by the architect in form of drawings and documents. In the MK3 project the priorities in the planning and design processes are as follow:

1. The manufacturing process (leading)
2. Layout (the plant and its surroundings)
3. The construction of the plant

This leads to a situation where the focus is on the manufacturing process and functionality of the machinery in the plant instead of the actual building. All separate design processes including construction, HVAC, electrical installations, process, etcetera occurs simultaneously in a concurrent design approach. Because of the complexity of the project the contract was based on incentives to meet the client’s requirements in function, time and costs. This contractual form is called Partnering and forms an open collaborative environment for reaching a common goal for all major stakeholders in the project. It was also decided to use model-based design tools, such as 3D CAD and VR, in the design and planning process of the project to enhance the communication between the stakeholders and reduce the risk. The different design teams was free to use the 3D CAD tool they considered to be the most suitable as long as it could export the 3D CAD model in DWG format. Different VR prototypes were then assembled from the exported DWG models. A screenshot of a “VR environment” presenting an avatar inside one of the main facilities is shown in Figure 1.

The 2D CAD drawings are in most cases extracted from the 3D CAD models to be refined and used for production purposes. The project has also employed a number of retired local staff who has experience from the existing pelleting plant constructed during the 1970s. Otherwise, lack of local competence could have been a problem considering that the plant is being built on a remote and sparsely populated place.

DESIGN TOOLS AND WORK METHODS

The VR environment used in the MK3 project is a “low-cost” approach that consists of commercial software, PC computers, servers and projectors. The VR software is Walkinside that is compatible with the most of the major CAD formats. The cost for producing and exploiting the virtual prototypes, and the consequences from this (read: the savings), is impossible to estimate as this comes within the scope of the Partnering agreement. An independent VR consultant working for the client is especially appointed to work full-time managing all VR prototypes. Most of the information that makes up the VR prototypes of the plant originates from 3D CAD models developed by groups of multidisciplinary design teams. These teams work together with the goal to fulfill the client’s requirements and design intents of the pelleting plant. The electrical installations are modeled in 2D and later remodeled into 3D path for the cabling. The 3D CAD models are also being used for other purposes such as: spatial planning, extracting 2D CAD drawings and further processing in order to extract more detailed 2D CAD drawings as well as for updating 2D CAD drawings. The 2D CAD drawings are mainly used for production. The design teams who also extract chosen parts of the models to be included in the VR prototypes are responsible for the development of the 3D CAD models. These are then transferred into a common FTP server that works as a hub for exchanging and storing all visualization information. Every design team has their own dedicated folder with assigned authorization to facilitate the exchange administration and also to secure those parts of the information that is, for example, protected by patent. It is also common that the designers do not want to share all the information they create (Staub et al. 1999). They simply want to share the relevant information for a particular situation (Liston et al. 2001). The design teams are also responsible that the latest updated version should always be available. The
modeling is carried out in 3D CAD software such as Solidworks, AutoCAD, Tekla Structures, Microstation (where most of the mapping of material and textures is done), Inventor, Steelcad, EPX and Intergraph’s PDS system. The common exchange format is primarily DWG.

After a new set of 3D CAD models has been transferred to the FTP server they are converted into VR prototypes by the VR consultant. Large models are converted independently, optimized and integrated with the other models. Smaller models are converted in groups. The aim is to present updated versions every week, however, the reality is that this occurs every two weeks or when a big revision has been made. To smooth the progress of integration, all 3D CAD models are modeled using the same coordinate system. The total amount of information making up the VR prototypes of the pelletizing plant is extensive, including the construction (prefabricated and cast in place concrete, and the steel structure), its installations (machinery, HVAC, electrical installations, etcetera) and its surroundings. The VR prototypes are considered to be reliable since they originate directly from the different design teams 3D CAD models and not remodeled via supporting 2D CAD drawings.

After the transfer, storing, converting and optimizing have been completed, the VR consultant then produces different VR prototypes for different purposes, for example, design reviews, construction site planning, production, mounting, working environment, presentations, etcetera. The updated prototypes are then transferred back to the design teams folders in the FTP server. Focus is also on producing suitable VR prototypes for the customer to use for e.g. spatial planning, understanding the construction and its machinery, training of workforce, reconstruction, new work activities, handling hold-up in production, etcetera. All design teams are also responsible for providing correct and updated input data to the “VR database”. An independent VR consultant working for the client manages all the VR data and also makes updated and corrected VR prototypes accessible for everyone to use in the project. The provided VR prototypes, VR \(I \) to VR \(n \), are used in the ‘formal’ design review meetings, Design review \(I \) to \(n \), that takes place once every fortnight and includes representatives from the client and the design teams. Errors discovered during these design review meetings are either immediately dealt with by the representatives themselves or delegated to the design teams concerned. All errors that have been attended to are logged and later confirmed in the next following meeting. Decisions on major changes in the design are taken after conducting a risk analysis on the three goals in the project; the capacity, the time and the economical impact. These decisions are always taken in the risk management group consisting of the Client and the main subcontractors in the Partnering contract. However, the greatest value for the customer comes from the

Decision-making and Capturing the Client’s Requirement in the Design Review Process

The use of VR prototypes facilitates two important processes in the design review; the Decision-making and Capturing the Client needs and requirements. The decision makers base their decisions on large, heterogeneous and multidisciplinary sets of data (Liston et al. 2001). These data sets need to be effectively coordinated and communicated in design reviews with the multidisciplinary design teams and the client (Christiansson 2001).

The time-pressure in the project and the use of Partnering as a stimulus to enhance the collaboration between the stakeholders, resulted in a concurrent design process where the use of digital VR mock-ups where selected as the main tool for coordination and communication of client requirements in the design review process.

AN ITERATIVE DESIGN PROCESS

Figure 2 outlines the iterative design process in the MK3 project. The client is responsible for the overall design process while the design teams, here denoted Design team \(I \) to \(n \), is responsible for the design of the subsystems in the plant, i.e. process equipment, building structure, installations etcetera. All design teams are also responsible for the coordination and communication of client requirements in the design review process. Errors discovered during these design review meetings are either immediately dealt with by the representatives themselves or delegated to the design teams concerned. All errors that have been attended to are logged and later confirmed in the next following meeting. Decisions on major changes in the design are taken after conducting a risk analysis on the three goals in the project; the capacity, the time and the economical impact. These decisions are always taken in the risk management group consisting of the Client and the main subcontractors in the Partnering contract. However, the greatest value for the customer comes from the
ability to supervise, interact and provide input to the design teams in the design reviews during the entire design process. ‘Informal’ design review meetings are also conducted continuously throughout the design process. These informal meetings main objectives are to function as a complement to the formal meetings and to speed up the design process. One of the drawbacks of using VR as a communication platform has been that the access has been limited to the VR software and the computing power needed to visualize the large VR prototypes. Therefore most of the information in these informal meetings has been based on 3D models, extracted 2D paper drawings communicated through emails and telephone meetings. However, the lack of VR has not impacted the information sharing, since these informal meetings occurs between the regular design reviews where the coordinated VR prototypes are presented. The partners in the Partnering group have encouraged the sharing of information in informal meetings between the different design teams. All VR prototypes are collectively shared and owned by the partners.

DECISION-MAKING

Howard et al. (1984) defined the term decision analysis as the discipline comprising the philosophy, theory, methodology, and professional practice necessary to address important decisions in a formal manner. They continue to argue that the term includes the procedures, methods, and tools for identifying, clearly representing and formally assessing the important aspects of a decision situation. Decision-making in the MK3 project is a critical procedure, especially for the client where the decisions in the project will have a long-term impact on the opportunity to make revenue on the invested capital. The decision making and the design sequencing can affect the design process negatively. To reduce the risk for negative design iterations Ballard (2000) suggest among other measures; team problem solving, the share of incomplete information and concurrent engineering. Decisions made early in the design process have also a greater impact on the final outcome. Therefore, by focusing on the preliminary design stage, the greater are the chances to achieve a positive effect on the final costs and quality. This applies to this project as well to most construction projects. In view of the wide range of technical inputs, the client and the designers must provide information in an informative way so it can be assimilated into other decision criteria, e.g. risks, costs and milestones. The challenge, according to Kam et al. (2004), is to keep the decision makers (in this study - the client and the design teams) informed of all the options and decision criteria during all phases of the decision-making process, particularly in the briefing phase. It is therefore vital that the design teams prepare the information in a way so that the client can pay attention to what is essential, thus gaining valuable time and reducing the risk for misinterpretations. The design teams themselves need to explore different alternatives by predicting and evaluating the impact on the project as a whole in order to come up with the best solutions.

Today the communicating in most construction projects is based on 2D drawings and paper documents. This is clearly not sufficient as regarding to the requirements mentioned above. The participants need better and more effective tools to share and communicate project information. To support the needs of the collaborative multi-disciplinary
design and decision-making process in the MK3 project, the client and the different design teams has used a number of VR prototypes for communication of comprehensible project information. Early in the project the decision to use 3D CAD and VR was taken by the Partner group. The project management foresaw the difficulties of gathering and communicating easily comprehensible multi-disciplinary information.

In the MK3 project, the VR prototypes constituted the most vital source of information together with 2D drawings and paper documents for continuous decision-making. There are several examples in the MK3 project where the VR prototypes facilitated the decision-making in the design process. For example, because of the tight time schedule, sometimes the different design teams needs to take quick internal decision often without consulting the other design teams on a regular design review meeting. The VR prototypes help them to better understand the multi-disciplinary consequences of a decision. From the client’s perspective, the impact of the decision on the manufacturing processes has the highest priority. All other decisions regarding e.g. construction, HVAC, etcetera, is of subordinate significance. Therefore, when the client had chosen the plant process and the machinery that supported the required capacity, it was then possible to define the spatial needs. These needs were describe to the construction design teams using a VR prototype of the plant process design. The construction design teams could then begin to plan the layout of the construction and make decisions about technical solutions, which would later be discussed, followed up and evaluated in the succeeding design review meetings. Besides making it easier for the client to make crucial decisions, the VR prototypes have also involved the client in the everyday design work. Being able to quickly sort out the information that is relevant for the moment and present it in an easy and comprehensible way to a wider audience such as the plant operating and maintenance staff, have facilitated the decision-making processes for the client.

ADDING VALUE AND MINIMIZE WASTE

Several papers and reports have pointed out the role of ICT in facilitating the processing of client requirements (e.g. Kamara 1996; Worthington 1994; CIT 1996). Client requirements and the processing of these involves the communication of needs, wishes and expectations of the person or firm responsible for commissioning and paying for the design and construction of a facility in a format that enhances the understanding and implementation of what is desired (Kamara et al. 1999 and Miron et al. 2003).

As mentioned earlier, the use of VR prototypes in the MK3 project have facilitated for the client to become more actively involved in the design process. However, it is difficult to give an overall estimation of the value added and the waste saved caused by the use of VR in the design process. Here, we will give the reader just a few examples on how the technology been utilized to add value to the final design and to minimize the waste in the production phase.

In the analysis of the plant working environment and safety a special designed avatar of ample size (210 cm of height) was let to mimic the behavior of the operational and maintenance staff. This was primarily a spatial analysis where working spaces, escapes routes and risky areas in the plant were investigated. The result of the analysis was forwarded to the involved design teams for redesign of the problematic areas in question.

The second example also concerns a spatial analysis but with a total different purpose. The operation of a highly automated industrial process is to a large extent dependent on the maintainability of the process equipment. Measures to prevent production losses have high priority in such facilities due to the economical consequences. Therefore, to make sure that maintenance could be conducted, the maintenance personal was asked to participate in a spatial analysis using avatars and VR prototypes of the process machinery and layout. Problematic areas from a maintenance point of view could as a result be taken care of in the design phase.

Many of the non-productive work during the production phase is generated in the design phase. Rework caused by collisions between different objects, such as HVAC and the building construction, is mainly due to incomplete coordination and information flow between different design teams. The use of 3D and automatic collision detection can be a remedy to this problem, but this implies the all design teams should use the same CAD system. Furthermore, in large construction projects containing a huge amount of CAD objects, the use of automatic collision detection generates in many cases too much collision information to be practicable. Instead the same technique of probing avatars was used to detect collisions in special areas of the plant. Since the major risk for collisions occurs in the interface between different design teams, e.g. mainly between installation and construction, a visual detection technique was used. For example the avatar was made to crawl inside the ventilation system to detect colliding objects penetrating the ventilation shaft, see Figure 3. This last example also shows how natu-
ral/visual interfaces to large data sets can inspire the interaction with VR systems that mimics the strategy that would be taken in the real world.

DISCUSSION AND CONCLUSIONS

Howell (1999) pointed out the essential principles of lean construction; to include a clear set of objectives for the delivery process, aimed at maximizing performance for the customer at the project level, concurrent design of product and process, and the application of production control throughout the life of the product from design and delivery. Even if not explicitly evaluated, we still want to stress the correlation between some of the main principles of lean construction, especially the use of VR to facilitate decision-making, coordination and communication in the design review process. According to several interviews the use of VR has increased the reliability in the design process to fulfill the client’s needs and requirements or as Howell (1999) put it “Partnering is about building trust, and lean is about building reliability”. The reliability has been obtained by continuously updating the VR model using the different design teams’ production models.

The rich information environment has facilitated the client and the design teams to focus on ‘priority of consideration’. The interactivity has enabled the use of unorthodox methods to test for maintainability, working environment and to minimize waste in the production phase caused by collisions in the design.

The technical interoperability between the different design teams has not been seen as a major obstacle despite the variety CAD system used in the project. The rather primitive propriety format DWG provided “enough” technical interoperability for the users in this project to compile and integrate the various design teams 3D CAD models into VR model. The technical interoperability has been identified as one of the main barriers in several research project conducted over the last decade. Instead the project management focused on selecting the best designers available using the CAD software of their choice. The interoperability was then a technical matter of selecting the common format and to overcome some of the spurious errors that occurred in the export of the DWG files to the VR prototype. Most of these exchange errors could easily be detected and corrected.

The reluctance to share information is also a major identified barrier in the construction sector. Even though the Partnering concept facilitates the cooperation between the different stakeholders by trust the main cause for the intense information flow and willingness to share has been the time pressure forcing the different design teams to act concurrently.

Based on the experience from the MK3 project, the client LKAB, has decided to use the same contractual concept and working method in the next project—the construction of a new pelletizing plant in Kiruna, Sweden, twice the size of MK3.

ACKNOWLEDGEMENTS

This paper is based on a field investigation where several people involved in the MK3 project were interviewed. These people represent the client (LKAB) and a number of subcontractors with liabilities within project management and planning, design management, business management and development, technical engineering and VR modeling. We thank them for their invaluable commitment and patience in sponsoring our work and providing access to project data and methods as well as their own knowledge and experiences. We also acknowledge the financial support from the Swedish research fund for environment, agricultural sciences and spatial planning (Formas), the Swedish construction development fund (SBUF) and the European regional funds.

REFERENCES

Proceedings IGLC-13, July 2005, Sydney, Australia

