

PRECAST CONCRETE BUILDING CONSTRUCTION PROCESS COMPARISON

Tian Xiaosheng, Graduate Student, Civil and Environmental Engineering Dept., University of Alberta, Canada, xtian4@ualbert **Farook Hamzeh**, Associate Professor, Civil and Environment Engineering Dept., University of Alberta, Canada, hamzeh@ualbert

Agenda:

- Introduction
- Methodology
- Results
- Conclusions

ONTON·ALBERTA·CANADA

Introduction

28th ANNUAL CONFERENCE OF THE INTERNATIONAL GROUP FOR LEAN CONSTRUCTION

- Previous research applied Lean thinking to improve production to solve the common problems.
 - Long lead times Jumbled flow Process waste

 Seldom research focuses on comparing process status of PC construction between developing countries and developed countries.

Methodology Case study analysis

28th ANNUAL CONFERENCE OF THE INTERNATIONAL GROUP FOR LEAN CONSTRUCTION

"How" and "Why" process differences occur in selected cases

CURRENT STATE MAPPING OF CASE 1.

28th ANNUAL CONFERENCE OF THE INTERNATIONAL GROUP FOR LEAN CONSTRUCTION

Case 1

Location: Alberta, Canada

Project type: 6 story multifamily building

Precast concrete supplier (PS): Local large company

PS's scope of work : design, produce, delivery, erection

Use 3D modeling in Design

CURRENT STATE MAPPING OF CASE 1.

28th ANNUAL CONFERENCE OF THE INTERNATIONAL GROUP FOR LEAN CONSTRUCTION

Current problems:

- Extra shop drawing modification ranges from 5 minutes to 1.5 hours was needed to modify each drawing.
- The lead time between the production and delivery could be 1 to 2 weeks.
- The lead time before erection was one-month long, which was caused by the slow production rate and the fast erection rate

CURRENT STATE MAPPING OF CASE 2.

28th ANNUAL CONFERENCE OF THE INTERNATIONAL GROUP FOR LEAN CONSTRUCTION

Case 2

Location: Beijing, China

Project type: 12 story multifamily building Precast concrete supplier (PS): Local large company

PS is subcontractor

PS's scope of work : design (2D drawings), produce, delivery

CURRENT STATE MAPPING OF CASE 2.

28th ANNUAL CONFERENCE OF THE INTERNATIONAL GROUP FOR LEAN CONSTRUCTION

Current problems:

- Long lead times before the start of shop drawings caused by the subcontract agreement.
- Long shop drawing design duration caused by traditional 2D-drawings.
- 2-8 hrs. per drawing
- The complex connection method increased the erection duration.

28th ANNUAL CONFERENCE OF THE INTERNATIONAL GROUP FOR LEAN CONSTRUCTION

COMPARISON OF THE CURRENT STATE PROCESSES

Case	Case 1 in Alberta, Canada	Case 2 in Beijing, China	Benefit
Involvement time	V Early	late	Better synergies, less error and rework
Components design	VMore standardized	Less standardized	Shorter lead time, lower cost
Project participation	VWhole project cycle	Limited project phases	Better synergies and productivity
Engineering design	Third party consultant	VIn-house engineering	Better shop drawi

FUTURE STATE MAPPING OF CASE 1.

- Enhance the cooperation through an inhouse engineering department to improve quality of shop drawings
- Improve the shop drawing export function to reduce modification.
- Introduce a supermarket to
 - Reduce the lead time (duration)
 - Change the push system into a partial pull system

FUTURE STATE MAPPING OF CASE 2.

- Apply BIM to improve the design efficiency.
- The precast supplier should positively participate in the project from early project phase to drive the design.
- Standardize the components design to improve efficiency and reduce cost.

IDEAL STATE MAPPING FOR FUTURE PROJECTS

EDMONTON-ALBERTA EDMONTON-ALBERTA FUTURE PROJECTS

28th ANNUAL CONFERENCE OF THE INTERNATIONAL GROUP FOR LEAN CONSTRUCTION

• Kaizens (Improvement suggestions):

- Combine BIM & Lean to improve production system.
- Use data driven simulating to inform project duration and cost.

IDEAL STATE MAPPING FOR FUTURE PROJECTS

28th ANNUAL CONFERENCE OF THE INTERNATIONAL GROUP FOR LEAN CONSTRUCTION

• Kaizens :

 Use RFID and other sensors to collect data in the value chain for product lifecycle management.

EDMONTON ALBERTA EDMONTON ALB**EAL STATE MAPPING FOR** FUTURE PROJECTS

28th ANNUAL CONFERENCE OF THE INTERNATIONAL GROUP FOR LEAN CONSTRUCTION

• Kaizens :

- Use autonomous vehicles to improve logistics
- An integrated system to utilize technologies in Industry 4.0 to improve the productivity

IDEAL STATE MAPPING FOR FUTURE PROJECTS

BERKELEY, CA 6-12 JULY 2020

28th ANNUAL CONFERENCE OF THE INTERNATIONAL GROUP FOR LEAN CONSTRUCTION

• Kaizens :

• Use virtual reality (VR) or augmented reality (AR) to educate and assess the workers' skills and improve safety

IDEAL STATE MAPPING FOR FUTURE PROJECTS

BERKELEY, CA 6-12 JULY 2020

28th ANNUAL CONFERENCE OF THE INTERNATIONAL GROUP FOR LEAN CONSTRUCTION

• Kaizens :

• Educate students with lean construction concepts can reduce the knowledge barrier as lean experts are critical to the success of lean improvements for the precast supplier.

Conclusions

- Compared the current processes of the two selected precast construction projects in Canada and China, both have some places for future improvement.
- The project in Canada has less rework, shorter lead time and better productivity because of the earlier PS involvement, application of BIM and higher ratio of standardized precast design.
- The project in China has higher quality of shop drawings because of the inhouse engineering capability.
- Enhanced cooperation and improved shop drawing export function are suggested to the Canadian PS to reduce the design duration and shorten the lead time, and applying BIM to design precast elements from the project early phase is the solution for the Chinese PS.
- A comprehensive future state map is proposed for future precast using a combination of new technologies in industry 4.0.