USING 5D models and CBA for planning the foundations and concrete structure stages of a complex office building

Juan C. Suarez, Jaime Zapata, and Xavier Brioso

GETEC Research Group, Department of Engineering, PUCP
juanc.suarez@pucp.edu.pe
Commonly adopted methodologies by building contractors in Peru:

Last Planner System, which is one of the *most widely accepted techniques* by construction companies that are starting to adopt the Lean Construction. (Orihuela 2015)

BIM is being rapidly adopted in the Peruvian industry, a study conducted in 2017 showed that *1 out of 4 building projects in Peru used BIM*. Commonly used to improve the visualization, automate the QTO process and identify incompatibilities (Murguia 2018).

Critical Path Method (CPM), which is mentioned as a contractual tool in the Peruvian government contracting laws. (Brioso et al. 2016)
Introduction

Two main problems in the Contractor’s traditional methodologies, tools, and procedures:

1. Lack of synergy between planning and control methodology of the Contractor (CPM) and Lean Construction philosophy.

2. Lack of integration within the tools/procedures used for methodologies that has explicit synergy.
Introduction

1. Lack of synergy

Reasons:

- **PUSH control type.** (Seppänen 2009).
- Downsides of the controlling phase of the CPM (Arditi et al. 2002; Olivieri et al. 2018): (i) not focusing on the workflow, (ii) neglecting production rates, (iii) omitting the work disparity in locations, (iv) demoting resource management, and (v) inefficient on repetitive projects.

Methodology Proposed:

Location Based Management system

- Enables continuous workflow and aims Lean goals (Seppänen 2009).
- Transforms quantities in locations, determines reliable durations based on productivity information, makes buffers explicit, and alarms of future production problems based on its forecasts (Kenley & Seppänen 2010).
1. Lack of Integration

Reasons:

- **BIM** mostly used 3D dimension approach (visualization, QTO, compatibilization) (Murguia 2018).
- **Activities based approach** of CPM do not integrate the location approach of construction.
- More effort and tools (unconnected software) needed to integrate the information of cost, durations and quantities.

Methodology Proposed:

- **5D BIM models**: budget line items are associated with specific measurable features of model objects (Sacks et al. 2018).
- LBMS determines reliable durations based on productivity information and location quantities.
- **5D software** that integrates LBMS, BIM and LPS tools, exists in the market.
Introduction

Traditional (current) Methodologies:
- CPM + 3D BIM model + Lean
 - 3 unconnected software

Proposed Methodologies:
- Flowlines + 5D BIM model + Lean
 - 1 software for 3d, cost & Schedule information

Choosing by Advantages: to support sound decision-making using comparisons among advantages of alternatives (Arroyo et al. 2013)

The research shows the benefits of integrated scope-cost-time solution for lean management compared to traditional methods, following a standardize decision-making.
Case of study:
Planning the foundations and concrete structure stages of an office building: 24 000 m² constructed area:

1) Framework of traditional methods
2) Gather scope, cost & schedule information
3) 3D & 5D modelling
4) Model presented to the Contractor
5) CBA elaboration

This research focuses on setting the basis in the planning phase of foundations and concrete structure, future research can cover the construction phase and other disciplines.
5D Model based in Flowlines

1) 3D modelling involved:
 - Foundations
 - Soil filling
 - 4 types of slabs
 - Vertical and horizontal elements
 - Ramps, stairs

1.1) Define locations:
Floors (6) → Blocks (3 per floor) → Sectors (one per day)

2) Integrate 3D model-locations -quantities -schedule & cost information in one database

3) Elaborate the flowlines
3) Flowlines:

- Overview of the constructive sequence
- Identify the **bottlenecks** to ensure *continuous flows*.

Concrete mixers were allowed in specific hours during the night shift

Soil filling case
5D Model based in Flowlines

3) Flowlines:
 • Align the **slope of the bottlenecks** to the contractual milestones, plan all the activities around **this slope** (per location). *Efficient flows*

 ![Diagram showing flowlines and bottlenecks]

 Blue square indicates the internal milestone
 Red arrows indicate the bottlenecks’ slope = “Backbone”
3) Flowlines:
 • When adjusting the slope of all the activities, identify **opportunities to improve** the planned resources. *Efficient processes*

4) Automated resource and budget items histograms for all the detail needed (per time or per level of detail in cost)

2 problems identified

1) **Rebar** needed more than 20 crews to achieve the production demanded. Solution: preformed rebar

2) **Soil filling** needed lots of manhours per day, critical activity for resources.
Evaluating the models

ALTERNATIVES:
1. 3D models + CPM + Lean,
2. 4D models + CPM + Lean, and
3. 5D models + LBMS + Lean

Factors, attributes (Att:) and advantages (Adv:) criteria:

<table>
<thead>
<tr>
<th>FACTOR 1:</th>
<th>Plan an effective Lean Production System</th>
<th>Alt. 1</th>
<th>Alt. 2</th>
<th>Alt. 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Criterion:</td>
<td>Ensuring an effective Lean Production System is better</td>
<td>0</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>1. Alt. 1</td>
<td>Att: CPM to plan</td>
<td>0</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>2. Alt. 2</td>
<td>Att: Flow lines to plan and balance the production rate based on the bottlenecks</td>
<td>0</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>3. Alt. 3</td>
<td>Adv: continuous flows, efficient flows and efficient processes</td>
<td>0</td>
<td>0</td>
<td>100</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FACTOR 2:</th>
<th>Sinergy with Earn Value reports</th>
<th>Alt. 1</th>
<th>Alt. 2</th>
<th>Alt. 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Criterion:</td>
<td>Less time spent with more possible detail, is better</td>
<td>0</td>
<td>0</td>
<td>90</td>
</tr>
<tr>
<td>1. Alt. 1</td>
<td>Att: Spreadsheets manual integration</td>
<td>0</td>
<td>0</td>
<td>90</td>
</tr>
<tr>
<td>2. Alt. 2</td>
<td>Att: CPM and quantities integrated</td>
<td>0</td>
<td>0</td>
<td>90</td>
</tr>
<tr>
<td>3. Alt. 3</td>
<td>Adv: automated QTO vs time</td>
<td>0</td>
<td>0</td>
<td>90</td>
</tr>
<tr>
<td>3. Alt. 3</td>
<td>Adv: planned value automated, in control forecasts automated</td>
<td>0</td>
<td>0</td>
<td>90</td>
</tr>
</tbody>
</table>
Evaluating the models

FACTOR 3:
Scheduling automation

Criterion:
Less time spent is better

- **Alt. 1** 0
- **Alt. 2**
 - Att: CPM, input needed: durations and n° of crews
- **Alt. 3** 80
 - Att: Flow lines for the schedule
 - Adv: durations and resources needed per activity are automated.

FACTOR 4:
Schedule understanding

Criterion:
Better understanding from the engineers

- **Alt. 1** 60
 - Att: CPM for the scheduling and visualization
 - Adv: All the staff understands
- **Alt. 2** 80
 - Adv: Understanding + visualization
- **Alt. 3** 0
 - Att: flowlines represent the schedule.

FACTOR 5:
Learning process

Criterion:
Less training hours needed is better

- **Alt. 1** 80
 - Att: 3D, spreadsheets and CPM
 - Adv: Commonly used in Peruvian industry
- **Alt. 2** 50
 - Att: 4D models, spreadsheets and CPM
 - Adv: Regularly used in Peruvian industry
- **Alt. 3** 0
 - Att: 5D models and LBMS
Evaluating the models

FACTOR 6: QTO and Cost in time automation

<table>
<thead>
<tr>
<th>Alt.</th>
<th>Score</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alt. 1</td>
<td>0</td>
<td>Att: Automated QTO and cost distribution in time associated with cost</td>
</tr>
<tr>
<td>Alt. 2</td>
<td>30</td>
<td>Adv: Schedule information synchronized</td>
</tr>
<tr>
<td>Alt. 3</td>
<td>70</td>
<td>Adv: Automated QTO and distribution in time associated with cost</td>
</tr>
</tbody>
</table>

Criterion: Less time spent and more detail capacity

FACTOR 7: Schedule understanding

<table>
<thead>
<tr>
<th>Alt.</th>
<th>Score</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alt. 1</td>
<td>0</td>
<td>Att: Automated QTO and distribution in time associated with cost</td>
</tr>
<tr>
<td>Alt. 2</td>
<td>0</td>
<td>Adv: All the staff understands</td>
</tr>
<tr>
<td>Alt. 3</td>
<td>50</td>
<td>Adv: Much more info. displayed,</td>
</tr>
</tbody>
</table>

Criterion: More relevant information that do not complicates the Schedule analysis.

FACTOR 8: State contract laws

<table>
<thead>
<tr>
<th>Alt.</th>
<th>Score</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alt. 1</td>
<td>50</td>
<td>Adv: Automated process to determine the Critical Path and effective visualization</td>
</tr>
<tr>
<td>Alt. 2</td>
<td>50</td>
<td>Adv: Understanding + visualization</td>
</tr>
<tr>
<td>Alt. 3</td>
<td>0</td>
<td>Att: Flow lines schedule for planning and control</td>
</tr>
</tbody>
</table>

Criterion: Easier determination and better visualization of the critical path is better
Evaluating the models

<table>
<thead>
<tr>
<th></th>
<th>(1) 3D models + CPM + Lean</th>
<th>(2) 4D models + CPM + Lean</th>
<th>(3) 5D models + LBMS + Lean</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>190</td>
<td>240</td>
<td>390</td>
</tr>
</tbody>
</table>

Key outputs:

- Ensures an effective Lean Production System.
- Automated distribution of resources, costs and quantities.
- Automated calculation of resources and durations guided by bottlenecks and milestones.
- More detail capacity in the Schedule.
Discussion

• Lack of synergy and integration in methodologies / tools \(\Rightarrow\) more working hours

• Proposed methodology: 5Dmodels + LBMS + Lean
 • Implemented in parallel into the planning stage

• Flowlines Schedule guided by the slope of the bottlenecks (backbones).
 • ready-mix concrete pouring process
 • soil filling process
Discussion

• CBA: 5D models based on the LBMS.
 • *Planning an effective Lean Production system*
 Continuous flows → Identify the bottleneck per medium level location
 Efficient flows → Align activities to the Backbone
 Efficient processes → Optimize the construction process and resources
 • *Reporting the baseline automatically, more detail capacity*
 • *Automation*
 QTO process
 Resources and durations based on milestones and backbone
 Histograms and cost reports
 • QTO difference < 1%
Conclusion

• **Integrated scope-cost-time (5D + LBMS)** is the preferred solution for *lean management* compared to traditional methods.

• **5D + LBMS allows**
 - More automation (duration, resources, QTO, reports)
 - More essential details in visualization
 - More reliable process

• **Further research for:** Automated results in construction phase, automated early warnings, easier earn value control.
THANKS