

PRODUCTION PROCESS EVALUATION FOR EARTHWORKS

PhD Candidate, Eran Haronian Prof. Rafael Sacks

Seskin Virtual Construction Lab, Technion - IIT

Background - Earthworks

28th ANNUAL CONFERENCE OF THE INTERNATIONAL GROUP FOR LEAN CONSTRUCTION

- Continuous process -
 - Strictly sequenced, repetitive cycles of material processing operations
 - Heavy plant equipment, surveying team, and a material lab

• Continuous products -

- Product geometry derived from existing landscape, 3D alignment, and cross-sections
- Not composed of assemblies of discrete elements
- Do not have a straightforward Location Breakdown Structure (Kenley and Seppanen 2010).

Technology in Earthworks

- Machine Control (MC) technology 3D design, GNSS locations systems, and a set of sensors, enabling automation of operations
- How can we utilize the monitored data for process improvements and for production control?

Methodology

- Design Science Research
- Artifacts
 - Product information schema (Haronian and Sacks, 2019)
 - Production evaluation procedure
- Validation by case study

Roadel Information Schema

28th ANNUAL CONFERENCE OF THE INTERNATIONAL GROUP FOR LEAN CONSTRUCTION

5

Case Study

Data Monitoring

- The embankment was divided into 75,000 roadels
- Data obtained from the MC systems was linked to the elements

Waste Evaluation

28th ANNUAL CONFERENCE OF THE INTERNATIONAL GROUP FOR LEAN CONSTRUCTION

• Over-processing

Resource Waiting Time

Perspective view

Results - Production Process Evaluation (PPE) Index

Week 35		Week 37			1000
\mathbb{N}	/ Week		32	35	37
-211	Shift time [h:m]		122:00	122:00	122:00
-214	Gross working time [h:m]		103:57	107:54	112:41
-217	Waiting times in work packages [h:m]		55:11	35:08	35:25
-219	Net processing times [h:m]		48:45	72:45	77:16
-222	Over-processing time [h:m]		5:10	17:53	6:56
-224	Value adding time [h:m]		43:35	54:51	70:19
-227	Non-value adding time [h	:m]	78:24	67:08	51:40
-229	Production volume (Total	fill) [m³]	19,465	20,620	19,745
-232	Over production (Over fill) [m ³]	2,062	5,073	1,773
-235	Actual Production [m ³]		17,402	15,547	17,972
-237 💺	Theoretical Throughput [r	m ³ /hr]	267	283	271
	Production Process Evaluation [%]		53%	45%	54%

Further Work

- Implementation of Little's Law (Little 2011; 2008)
- Evaluation according to Factory Physics (Hopp and Spearman 2008)
- Seven production metrics

Evaluation by Little's Law

28th ANNUAL CONFERENCE OF THE INTERNATIONAL GROUP FOR LEAN CONSTRUCTION

• Throughput (TH) $P = \sum_{1}^{n} \frac{(h_{end \ shift,i} - h_{start \ shift,i}) * A_{i}}{d_{layer}}$ $TH = \frac{P}{T}$

• Cycle time (CT)

$$CT = \frac{\sum_{i=1}^{n} (T_{end,i} - T_{start,i})}{P}$$

• Work in progress (WIP) $WIP(t) = \sum_{1}^{n} \begin{cases} if \ T_{start,i} \leq t \leq T_{end,i} \rightarrow 1 \\ else \qquad \rightarrow 0 \end{cases}$

• $W_o, T_o, and r_b$

Evaluation by Little's Law, and Factory Physics (Hopp and Spearman 2008)

28th ANNUAL CONFERENCE OF THE INTERNATIONAL GROUP FOR LEAN CONSTRUCTION

CT ——CT, best ——CT, PWC

TH, act —— TH, best —— TH, PWC

Production Metrics

Category	Metric	Calculation
Planning	α1 – CPPC	Actual Production Volume Panned Peoduction Volume
Planning	$\alpha 2$ - Shift duration	$1 - \frac{ Actual Shift Duration - Planned Shift Duration }{Planned Shift Duration}$
Productivity	α3 – Productivity	actual TH r _b
Waste	$\alpha 4$ – Waiting times	Actual Shift Duration – Waiting Time Actual Shift Duration
Waste	α5 - Over processing	Actual Production Volume – Overprocessing Actual Production Volume
Flow	α6 - WIP	$WIP > W_0 \rightarrow \frac{W_0}{WIP}$
Flow	α7 - CT	$CT > T_0 \rightarrow \frac{T_0}{CT}$

Production Metrics

28th ANNUAL CONFERENCE OF THE INTERNATIONAL GROUP FOR LEAN CONSTRUCTION

Four categories for evaluation, on location and daily resolution:

Planning reliability

- Productivity
- Waste
- Flow

Conclusion

- LC for earthworks and road construction may have a significant impact processes, operations, and technology adoption
- Advanced technologies can be utilized for process analysis and to support production control
- The potential of LC combined with advanced technologies is demonstrated by the developed metrics
- Further implementation of LC for earthworks requires development and adaptation of **production theory**, principles, and tools