APPLYING BIM TOOLS IN IPD PROJECT IN PERU

Andrews Erazo, Giankeving Guzman, Stefany Espinoza
Outline

- Introduction
- Literature Review
- Case Study
- BIM & IPD Integration Flow
- Metrics
- Conclusions
Introduction
Literature Review - BIM
Literature Review - IPD

- Measurable Value
- Production Management
- Collaboration Co-location
- Visualization Simulation

- High-Performing Building
- Integrated Systems
- Integrated Processes
- Integrated Organization
- Integrated Information

Agreement/Framework
Literature Review - Lean
Study Case: Videna National Sports Complex

Project: Peruvian project for the 2019 Lima Pan American Games.
Time: 18 months (Design-Build)
Contract: NEC 3
BIM & IPD Integration Flow
BIM & IPD Process

1. Compatibilization in Design phase
2. ICE Sessions Development
3. BIM Coordination in Construction phase
4. RFI Integration in BIM process
Metric: Rate Of Resolved Issues
Metric: Cross-Disciplinary Interdependence

<table>
<thead>
<tr>
<th># of Interactions</th>
<th>Specialty areas</th>
<th>Arquitectural</th>
<th>Structural</th>
<th>Heating and Ventilation</th>
<th>Plumbing</th>
<th>Electrical</th>
<th>Telecom</th>
<th>Fire Protection</th>
<th>Gas</th>
<th>Security and Evacuation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>82</td>
<td>5</td>
<td>9</td>
<td>25</td>
<td>3</td>
<td>2</td>
<td>6</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0 to 11</td>
<td></td>
<td>15</td>
<td>46</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>12 to 30</td>
<td></td>
<td>45</td>
<td>4</td>
<td>79</td>
<td>1</td>
<td>14</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>31 to 45</td>
<td></td>
<td>34</td>
<td>5</td>
<td>5</td>
<td>53</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>58 to 82</td>
<td></td>
<td>16</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>31</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>20</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
<td>4</td>
<td>6</td>
<td>7</td>
<td>4</td>
<td>58</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Metric: Classification Of Requests For Information (RFI)
Metric: RFI Answer Time
Conclusions

The average response time was 7 days, which shows that the integration and collaboration of specialists helped reduce the response time by 67% compared to a traditional management project.

The proposed model allows that the participants in the design are very familiar with the coordination platform because it allows interacting very easily. An average ratio of resolved issues 73.28% was determined, which indicates the collaboration of the design team and an increasing trend over time.

After the application of the BIM and IPD integration framework in the project design stage, it was possible to solve relevant problems, improve efficiency during the construction stage, and ensure value for the client, since the project could be delivered to the client in time, as expected.
Andrews Erazo Rondinel
aerazor@uni.edu

Giankeving Guzman Ganto
gguzmang@uni.edu.pe

Stefany Espinoza
sespinoza@cosapi.com.pe