Would LBMS be applicable to offshore wind construction

Contribution 121
Authors: Jon Lerche, Olli Seppänen, Kristian Birch Pedersen, Hasse Neve, Søren Wandahl, Allan Gross
Pre-assembly Locations

Geographic segregation
Divided by main components and activities
Locations highlighted
Offshore Locations

Turbine are the Offshore locations

Transferable potentials
- Substations
- Cabling
Wind Turbine Construction

Pre-assembly

- Towers
- Nacelles / Hub
- Blades
- Transition Piece
- Tower
- Nacelle / Hub
- Blades

Offshore

- Turbine #1
- Turbine #2
- Turbine

Laydown area
Assembly area

Location
Structure
- No defined locations
- Technical dependencies
- More than 4000 activity lines between construction start / take over
1. External logical relationships between activities within locations.
2. External higher-level logical relationships between activities driven by different levels of accuracy.
3. Internal logic between activities within tasks.
4. Phased hybrid logic between tasks in related locations.
5. Standard CPM links between any tasks and different locations.
Example
Flowline

Overview of 16 turbines
CPM buffer gap visible
Pre-assembly and offshore separated locations

2 months gap
Jon Lerche
PhD Student, Dep. of Btech. at Aarhus University, Denmark, jon.lerche@btech.au.dk

Olli Seppänen
Professor of Practice, Aalto University, Dep. of Civil Engineering, Finland, olli.seppanen@aalto.fi

Hasse Neve,
PhD Student, Department of Engineering at Aarhus University, Denmark, hn@eng.au.dk

Kristian Birch Pedersen
PhD, Dep. of Construction Management at Aalborg University, Denmark, kbp@exigo.dk

Søren Wandahl,
Professor, Department of Engineering at Aarhus University, Denmark, swa@eng.au.dk

Allan Gross
Professor, Dep. of Btech. at Aarhus University, Denmark, agr@btech.au.dk
BACK UP SLIDES
<table>
<thead>
<tr>
<th>Source</th>
<th>Domain</th>
<th>Construct</th>
<th>Manufacturing</th>
<th>OF wind</th>
<th>CP</th>
<th>Method</th>
<th>LPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alla, A. A., Quandt, M., & Lütjen, M. (2013)</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ballard, H. G. (2000)</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Galloway, P. D. (2006)</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kenley, R. (2005, 2005/07/19)</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kenley, R., & Seppänen, O. (2010)</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kerzner, H., & Kerzner, H. R. (2017)</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lucko, G., & Gattei, G. (2016)</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hofmann, M. (2011)</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Olivieri, H., Seppänen, O., & Denis Granja, A. (2018)</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seppänen, O., Ballard, G., & Pesonen, S. (2010).</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seppänen, O., Evinger, J., & Mouflard, C. (2014)</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Valente, Montenegro, Brito, Biotto, and Mota (2014)</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
</tbody>
</table>
Current Overview

Grid available
Resource Consumption